EconPapers    
Economics at your fingertips  
 

A Unit Root Test with Markov Switching Deterministic Components: A Special Emphasis on Nonlinear Optimization Algorithms

Tolga Omay and Aysegul Corakci ()
Additional contact information
Aysegul Corakci: Çankaya University

Computational Economics, 2024, vol. 64, issue 3, No 18, 1837-1856

Abstract: Abstract In this study, we investigate the performance of different optimization algorithms in estimating the Markov switching (MS) deterministic components of the traditional ADF test. For this purpose, we consider Broyden, Fletcher, Goldfarb, and Shanno (BFGS), Berndt, Hall, Hall, Hausman (BHHH), Simplex, Genetic, and Expectation-Maximization (EM) algorithms. The simulation studies show that the Simplex method has significant advantages over the other commonly used hill-climbing methods and EM. It gives unbiased estimates of the MS deterministic components of the ADF unit root test and delivers good size and power properties. When Hamilton’s (Econometrica 57:357–384, 1989) MS model is re-evaluated in conjunction with the alternative algorithms, we furthermore show that Simplex converges to the global optima in stationary MS models with remarkably high precision and even when convergence criterion is raised, or initial values are altered. These advantages of the Simplex routine in MS models allow us to contribute to the current literature. First, we produce the exact critical values of the generalized ADF unit root test with MS breaks in trends. Second, we derive the asymptotic distribution of this test and provide its invariance feature.

Keywords: Markov switching model; Unit root; Optimization algorithm (search for similar items in EconPapers)
JEL-codes: C12 C22 C24 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10501-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10501-4

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-023-10501-4

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:64:y:2024:i:3:d:10.1007_s10614-023-10501-4