EconPapers    
Economics at your fingertips  
 

Estimating Income Distributions From Grouped Data: A Minimum Quantile Distance Approach

Tsvetana Spasova ()
Additional contact information
Tsvetana Spasova: FHNW University of Applied Sciences and Arts Northwestern Switzerland

Computational Economics, 2024, vol. 64, issue 4, No 6, 2079-2096

Abstract: Abstract This paper focuses on the estimation of income distribution from grouped data in the form of quantiles. We propose a novel application of the minimum quantile distance (MQD) approach and compare its performance with the maximum likelihood (ML) technique. The estimation methods are applied using three parametric distributions: the generalized beta distribution of the second kind (GB2), the Dagum distribution, and the Singh–Maddala distribution. We provide the density-quantile functions for these distributions, along with reproducible R code. A simulation study is conducted to evaluate the performance of the MQD and ML methods. The proposed methods are then applied to data from 30 European countries, utilizing the aforementioned parametric distributions. To validate the accuracy of the estimates, we compare them with estimates obtained from more detailed and informative microdata sets. The findings confirm the excellent performance of the considered parametric distributions in estimating income distribution. Additionally, the MQD approach is identified as a straightforward and reliable method for this purpose. Notably, the MQD method displays superior robustness in comparison to the ML technique when it comes to selecting suitable starting values for the underlying computation algorithm, specifically when dealing with the GB2 distribution.

Keywords: Minimum quantile distance; Maximum likelihood technique; Income distributions; Grouped data; GB2 distribution (search for similar items in EconPapers)
JEL-codes: C13 C46 D31 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10505-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10505-0

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-023-10505-0

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:64:y:2024:i:4:d:10.1007_s10614-023-10505-0