Risk Forecasting Comparisons in Decentralized Finance: An Approach in Constant Product Market Makers
Lucas Mussoi Almeida (),
Fernanda Maria Müller () and
Marcelo Scherer Perlin ()
Additional contact information
Lucas Mussoi Almeida: Federal University of Rio Grande do Sul
Fernanda Maria Müller: Federal University of Rio Grande do Sul
Marcelo Scherer Perlin: Federal University of Rio Grande do Sul
Computational Economics, 2025, vol. 65, issue 1, No 14, 395-428
Abstract:
Abstract This study leverages decentralized liquidity pool data sourced from UNISWAP-V2 to forecast Value-at-Risk (VaR) and Expected Shortfall (ES) employing the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model with varied error distributions and the deep learning probabilistic forecasting algorithm known as DeepAR. Performance evaluations of these distinct forecasting methodologies are conducted using an appropriate loss function. Results indicate that the GARCH model with a normal distribution consistently outperforms other models, particularly when forecasting VaR. Conversely, the DeepAR model exhibits limited effectiveness in VaR forecasting across all scenarios, except for liquidity pools involving at least one stablecoin. However, it demonstrates greater reliability in predicting most ES risk measures and associated data. Our findings underscore that in a subset of the data, providing liquidity to pairs involving at least one stablecoin entails statistically significant lower risk compared to holding an equivalent amount of crypto assets. Furthermore, this research contributes to the advancement of novel risk management tools and strategies tailored for liquidity providers.
Keywords: DeFi; Risk forecasting; Cryptocurrency; Liquidity pool (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10585-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:1:d:10.1007_s10614-024-10585-6
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-024-10585-6
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().