EconPapers    
Economics at your fingertips  
 

Two-Population Evolutionary Oligopoly with Partial Cooperation and Partial Hostility

F. Lamantia (), D. Radi and T. Tichy
Additional contact information
F. Lamantia: University of Calabria
D. Radi: VS̆B–Technical University of Ostrava
T. Tichy: VS̆B–Technical University of Ostrava

Computational Economics, 2025, vol. 65, issue 2, No 9, 763-794

Abstract: Abstract In this paper, we reconsider the model in Bischi and Lamantia (J Econ Interact Coord 17:3–27, 2022) and reformulate it in a two-population context. There, the Cournot duopoly market examined is in equilibrium (Cournot-Nash-equilibrium quantities are produced) conditionally to the players’ (heterogeneous) attitudes toward cooperation. To accommodate players’ attitudes, their objective functions partly include the opponent’s profit, resulting in greater (partial) cooperation or hostility toward the opponent than in the standard duopoly setting. An evolutionary selection mechanism determines the survival of cooperative or competitive strategies in the duopoly. The game is symmetric and Bischi and Lamantia (J Econ Interact Coord 17:3–27, 2022) assumes that the two players involved start the game by choosing the same strategic profile. In this way, the full-fledged two-population game simplifies in a one-dimensional map. In this paper, we relax this assumption. On one hand, this approach allows us to investigate entirely the dynamics of the model and the evolutionary stability of the Nash equilibria of the static game that is implicit in the evolutionary setup. In fact, the model with only one population partially represents the system dynamics occurring in an invariant subset of the phase space. As a remarkable result, this extension shows that the steady state of the evolutionary model where all players are cooperative can be an attractor, although only in the weak sense, even when it is not a Nash equilibrium. This occurs when firms have a very high propensity to change strategies to the one that performs better. On the other hand, this approach allows us to accommodate players’ heterogeneity (non-symmetric version of the game), whose analysis confirms the main insights attained in the homogeneous setting.

Keywords: Oligopoly modeling; Partial cooperation; Evolutionary games; Multi-population games; Nonlinear dynamics (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-023-10536-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:2:d:10.1007_s10614-023-10536-7

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-023-10536-7

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:compec:v:65:y:2025:i:2:d:10.1007_s10614-023-10536-7