Unleashing the Potential of Mixed Frequency Data: Measuring Risk with Dynamic Tail Index Regression Model
Hongyu An () and
Boping Tian ()
Additional contact information
Hongyu An: Harbin Institute of Technology
Boping Tian: Harbin Institute of Technology
Computational Economics, 2025, vol. 65, issue 3, No 16, 1567-1615
Abstract:
Abstract Understanding why extreme events occur is crucial in many fields, particularly in managing financial market risk. In order to explain such occurrences, it is necessary to use explanatory variables. However, flexible models with explanatory variables are severely lacking in financial market risk management, particularly when the variables are sampled at different frequencies. To address this gap, this article proposes a novel dynamic tail index regression model based on mixed-frequency data, which enables the high-frequency variable of interest to depend on both high- and low-frequency variables within the framework of extreme value regression. Specifically, it concurrently leverages information from low-frequency macroeconomic variables and high-frequency market variables to model the tail distribution of high-frequency returns, consequently enabling the computation of high-frequency Value at Risk and Expected Shortfall. Monte Carlo simulations and empirical studies show that the proposed method effectively models stock market tail risk and produces satisfactory forecasts. Moreover, including macroeconomic variables in the model provides insights for macroprudential regulation.
Keywords: Tail-risk; Extreme value theory; Macroeconomics; RU-MIDAS; Mixed-frequency data (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10592-7 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10592-7
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-024-10592-7
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().