EconPapers    
Economics at your fingertips  
 

Can Text-Based Statistical Models Reveal Impending Banking Crises?

Emile du Plessis ()
Additional contact information
Emile du Plessis: University of Hamburg

Computational Economics, 2025, vol. 65, issue 3, No 5, 1265-1298

Abstract: Abstract This paper introduces statistical models Wordscores and Wordfish to study and predict banking crises. While Wordscores is akin to supervised learning, Wordfish is analogous to unsupervised learning. Both methods estimate the position of banking distress on a tranquil-to-crisis spectrum. Findings suggest that the two statistical methods signal banking crisis up to two-years in advance, with robust results from AUROC, Granger causality and VAR impulse responses. Both methods outperform random forests in predicting crises using textual data. The Wordscores index highlights increased usage of banking sector nomenclature two years preceding a crisis, and Granger causes a crisis series with one and two lag lengths. Results from the Wordfish technique, a statistical model with Poisson distribution, show the index spikes before and during the Global Financial Crisis, when a large share of the countries in the world encountered banking crises. This paper contributes to literature on text-based models of banking crises by bolstering the preemptive policy responses available to policy makers. Given their early warning signals, both Wordscores and Wordfish can be considered a part of the toolset to monitor the stability and resilience of the banking sector.

Keywords: Quantitative analysis of textual data; Banking crises; Text-based models; Early warning signal (search for similar items in EconPapers)
JEL-codes: C49 C53 C54 C55 G21 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10594-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10594-5

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-024-10594-5

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10594-5