EconPapers    
Economics at your fingertips  
 

A Novel Hybrid Model by Integrating Gated Recurrent Unit Network with Weighted Error-Based Fuzzy Candlestick Model for Stock Market Forecasting

Yameng Zhang (), Yan Song () and Guoliang Wei ()
Additional contact information
Yameng Zhang: University of Shanghai for Science and Technology
Yan Song: University of Shanghai for Science and Technology
Guoliang Wei: University of Shanghai for Science and Technology

Computational Economics, 2025, vol. 65, issue 3, No 8, 1371 pages

Abstract: Abstract Fuzzy candlestick models have been widely used to forecast the stock market due to their capability to handle ubiquitous nonlinearities and the knowledge of investors. However, such models take only partial historical data into account and make the prediction exclusively by the selected historical data without considering the estimation errors and also lack long-term sequence information. To address these problems, a hybrid model (WEF-GRU) combines the so-called weighted error-based fuzzy candlestick (WEF) model and the improved gated recurrent unit (GRU) network is designed to reflect the influence of historical data and investor sentiment on the predicted result adequately and properly. In this study, the WEF model is established to map the fuzzy inputs to rough output to extract effective features based on the experience and knowledge of investors. Meanwhile, the GRU network is employed to maintain the long-term sequence information according to technique indicators, and then the final predicted result is derived by fusing the outputs of the WEF model and the GRU model. Finally, experimental results on eight real-world stock data which contain daily data demonstrate that the proposed hybrid model outperforms the baseline models.

Keywords: Stock market; GRU; Fuzzy candlestick model; Weighted error (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10599-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10599-0

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-024-10599-0

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10599-0