EconPapers    
Economics at your fingertips  
 

Monitoring the Dynamic Networks of Stock Returns with an Application to the Swedish Stock Market

Elena Farahbakhsh Touli, Hoang Nguyen and Olha Bodnar ()
Additional contact information
Elena Farahbakhsh Touli: Stockholm University
Hoang Nguyen: Linköping University
Olha Bodnar: Örebro University

Computational Economics, 2025, vol. 65, issue 3, No 20, 1758 pages

Abstract: Abstract In this paper, two approaches for measuring the distance between stock returns and the network connectedness are presented that are based on the Pearson correlation coefficient dissimilarity and the generalized variance decomposition dissimilarity. Using these two procedures, the center of the network is determined. Also, hierarchical clustering methods are used to divide the dense networks into sparse trees, which provide us with information about how the companies of a financial market are related to each other. We implement the derived theoretical results to study the dynamic connectedness between the companies in the Swedish capital market by considering 28 companies included in the determination of the market index OMX30. The network structure of the market is constructed using different methods to determine the distance between the companies. We use hierarchical clustering methods to find the relation among the companies in each window. Next, we obtain a one-dimensional time series of the distances between the clustering trees that reflect the changes in the relationship between the companies in the market over time. The method from statistical process control, namely the Shewhart control chart, is applied to those time series to detect abnormal changes in the financial market.

Keywords: Dynamic network; Hierarchical clustering tree; Stock returns; Tree distance; Swedish capital market (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10616-2 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10616-2

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-024-10616-2

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-22
Handle: RePEc:kap:compec:v:65:y:2025:i:3:d:10.1007_s10614-024-10616-2