Optimal Time Varying Parameters in Yield Curve Modeling and Forecasting: A Simulation Study on BRICS Countries
Oleksandr Castello () and
Marina Resta ()
Additional contact information
Oleksandr Castello: University of Genoa
Marina Resta: University of Genoa
Computational Economics, 2025, vol. 65, issue 4, No 11, 2113 pages
Abstract:
Abstract The term structure of interest rates is a fundamental decision–making tool for various economic activities. Despite the huge number of contributions in the field, the development of a reliable framework for both fitting and forecasting under various market conditions (either stable or very volatile) still remains a topical issue. Motivated by this problem, this study introduces a methodology relying on optimal time–varying parameters for three and five factor models in the Nelson–Siegel class that can be employed for an effective in-sample fitting and out–of–sample forecasting of the term structure. In detail, for the in–sample fitting we discussed a two–step estimation procedure leading to optimal models parameters and evaluated the performances of this approach in terms of flexibility and fitting accuracy gains. For what it concerns the forecasting, we suggest an approach overcoming the well–known issue between the stability of factor models’ parameters and the optimal dynamic decay terms. To such aim, we use either autoregressive or machine learning techniques as local data generating processes based on the optimal parameters time series derived in the in–line fitting step. The so–obtained values are then employed to get day–ahead predictions of the yield curve. We assessed the proposed framework on daily spot rates of the BRICS (Brazil, Russia, India, China and South Africa) bond market. The experimental analysis illustrated that (i) time–varying parameters ensure a significant boost in the models fitting power and a more faithful representation of the yield curves dynamics; (ii) the proposed approach provides also stable and accurate predictions.
Keywords: Nelson–Siegel model; De Rezende–Ferreira model; BRICS; Yield curve forecasting; TBATS; ARIMA–NARNN (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10619-z Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:4:d:10.1007_s10614-024-10619-z
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-024-10619-z
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().