EconPapers    
Economics at your fingertips  
 

A Generalized Hyperbolic Distance Function for Benchmarking Performance: Estimation and Inference

Paul W. Wilson ()
Additional contact information
Paul W. Wilson: Clemson University

Computational Economics, 2025, vol. 65, issue 6, No 2, 3077-3110

Abstract: Abstract This paper describes a new multiplicative, generalized hyperbolic distance function (GHDF) that allows the researcher to measure technical efficiency while holding a subset of inputs or outputs fixed. This is useful when dealing with “bad” or undesirable outputs, or in applications where some inputs or outputs are regarded as quasi-fixed. The paper provides computational methods for both free-disposal hull and data envelopment analysis estimators of the GHDF. In addition, statistical properties of the estimators are derived, enabling researchers to make inference and test hypotheses. An empirical illustration using data on U.S. credit unions is provided, as well as Monte Carlo evidence on the performance of the estimators. As illustrated in the empirical example, estimates of the GHDF are easier to interpret than estimates of additive, directional distance functions that until know have been the only non-parametric estimator of efficiency allowing subsets of input our outputs to be held constant.

Keywords: DEA; Efficiency; FDH; Hyperbolic; Non-parametric (search for similar items in EconPapers)
JEL-codes: C12 C14 C18 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10634-0 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10634-0

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-024-10634-0

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-06-03
Handle: RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10634-0