Enhancing Trading Strategies: A Multi-indicator Analysis for Profitable Algorithmic Trading
Narongsak Sukma () and
Chakkrit Snae Namahoot ()
Additional contact information
Narongsak Sukma: Naresuan University
Chakkrit Snae Namahoot: Naresuan University
Computational Economics, 2025, vol. 65, issue 6, No 25, 3807-3840
Abstract:
Abstract Algorithmic trading has become increasingly prevalent in financial markets, and traders and investors seeking to leverage computational techniques and data analysis to gain a competitive edge. This paper presents a comprehensive analysis of algorithmic trading strategies, focusing on the efficacy of technical indicators in predicting market trends and generating profitable trading signals. The research framework outlines a systematic process for investigating and evaluating stock market investment strategies, beginning with a clear research objective and a comprehensive review of the literature. Data collected from various stock exchanges, including the S&P 500, undergo rigorous preprocessing, cleaning, and transformation. The subsequent stages involve generating investment signals, calculating relevant indicators such as RSI, EMAs, and MACD, and conducting backtesting to compare the strategy's historical performance to benchmarks. The key findings reveal notable returns generated by the indicators analyzed, though falling short of benchmark performance, highlighting the need for further refinement. The study underscores the importance of a multi-indicator approach in enhancing the interpretability and predictive accuracy of algorithmic trading models. This research contributes to understanding of algorithmic trading strategies and provides valuable information for traders and investors looking to optimize their investment decisions in financial markets.
Keywords: Algorithmic trading; Technical indicators; Stock market; Investment strategies; Backtesting (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10669-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:65:y:2025:i:6:d:10.1007_s10614-024-10669-3
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
DOI: 10.1007/s10614-024-10669-3
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().