EconPapers    
Economics at your fingertips  
 

Policy Learning for Many Outcomes of Interest: Combining Optimal Policy Trees with Multi-objective Bayesian Optimisation

Patrick Rehill () and Nicholas Biddle ()
Additional contact information
Patrick Rehill: Australian National University
Nicholas Biddle: Australian National University

Computational Economics, 2025, vol. 66, issue 2, No 1, 1001 pages

Abstract: Abstract Methods for learning optimal policies use causal machine learning models to create human-interpretable rules for making choices around the allocation of different policy interventions. However, in realistic policy-making contexts, decision-makers often care about trade-offs between outcomes, not just single-mindedly maximising utility for one outcome. This paper proposes an approach termed Multi-Objective Policy Learning (MOPoL) which combines optimal decision trees for policy learning with a multi-objective Bayesian optimisation approach to explore the trade-off between multiple outcomes. It does this by building a Pareto frontier of non-dominated models for different hyperparameter settings which govern outcome weighting. The method is applied to a real-world case-study of pricing targetting subsididies for anti-malarial medication in Kenya.

Keywords: Policy learning; Multi-objective Bayesian optimisation; Optimal decision trees; Heterogeneous treatment effects; Data-driven decision making (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://link.springer.com/10.1007/s10614-024-10722-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:66:y:2025:i:2:d:10.1007_s10614-024-10722-1

Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2

DOI: 10.1007/s10614-024-10722-1

Access Statistics for this article

Computational Economics is currently edited by Hans Amman

More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-08-20
Handle: RePEc:kap:compec:v:66:y:2025:i:2:d:10.1007_s10614-024-10722-1