Recognizing Business Cycle Turning Points by Means of a Neural Network
Keshav P Vishwakarma
Computational Economics, 1994, vol. 7, issue 3, 175-85
Abstract:
The latest, 1990-91 recession marks the ninth downturn in the U.S. economy during the past fifty years. There is scope for adding extensions to the methodology of monitoring such major economic fluctuations. The use of artificial neural networks is proposed here. For demonstration a case study is included. In it four key economic indicators are examined; viz., sales, production, employment and personal income. The growth rate movement common to these variables is represented by a state space model of dynamic systems theory. Their monthly time series data over 1965-1989 are simultaneously analyzed. The dates of business cycle peaks and troughs identified in the analysis agree closely with the official chronology. Citation Copyright 1994 by Kluwer Academic Publishers.
Date: 1994
References: Add references at CitEc
Citations: View citations in EconPapers (2)
There are no downloads for this item, see the EconPapers FAQ for hints about obtaining it.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:compec:v:7:y:1994:i:3:p:175-85
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/10614/PS2
Access Statistics for this article
Computational Economics is currently edited by Hans Amman
More articles in Computational Economics from Springer, Society for Computational Economics Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().