EconPapers    
Economics at your fingertips  
 

Optimal healthcare decision making under multiple mathematical models: application in prostate cancer screening

Dimitris Bertsimas (), John Silberholz () and Thomas Trikalinos ()
Additional contact information
Dimitris Bertsimas: MIT Sloan School of Management and Operations Research Center
John Silberholz: MIT Sloan School of Management and Operations Research Center
Thomas Trikalinos: Brown University School of Public Health

Health Care Management Science, 2018, vol. 21, issue 1, No 7, 105-118

Abstract: Abstract Important decisions related to human health, such as screening strategies for cancer, need to be made without a satisfactory understanding of the underlying biological and other processes. Rather, they are often informed by mathematical models that approximate reality. Often multiple models have been made to study the same phenomenon, which may lead to conflicting decisions. It is natural to seek a decision making process that identifies decisions that all models find to be effective, and we propose such a framework in this work. We apply the framework in prostate cancer screening to identify prostate-specific antigen (PSA)-based strategies that perform well under all considered models. We use heuristic search to identify strategies that trade off between optimizing the average across all models’ assessments and being “conservative” by optimizing the most pessimistic model assessment. We identified three recently published mathematical models that can estimate quality-adjusted life expectancy (QALE) of PSA-based screening strategies and identified 64 strategies that trade off between maximizing the average and the most pessimistic model assessments. All prescribe PSA thresholds that increase with age, and 57 involve biennial screening. Strategies with higher assessments with the pessimistic model start screening later, stop screening earlier, and use higher PSA thresholds at earlier ages. The 64 strategies outperform 22 previously published expert-generated strategies. The 41 most “conservative” ones remained better than no screening with all models in extensive sensitivity analyses. We augment current comparative modeling approaches by identifying strategies that perform well under all models, for various degrees of decision makers’ conservativeness.

Keywords: Comparative modeling; Decision analysis; Sensitivity analysis; Model averaging; Optimization; Prostate cancer screening; Simulation modeling (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://link.springer.com/10.1007/s10729-016-9381-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:hcarem:v:21:y:2018:i:1:d:10.1007_s10729-016-9381-3

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10729

DOI: 10.1007/s10729-016-9381-3

Access Statistics for this article

Health Care Management Science is currently edited by Yasar Ozcan

More articles in Health Care Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:hcarem:v:21:y:2018:i:1:d:10.1007_s10729-016-9381-3