EconPapers    
Economics at your fingertips  
 

Cognitive workload reduction in hospital information systems

Daniel Gartner (), Yiye Zhang and Rema Padman
Additional contact information
Daniel Gartner: Cardiff University
Yiye Zhang: Cornell University

Health Care Management Science, 2018, vol. 21, issue 2, No 6, 224-243

Abstract: Abstract Order sets are a critical component in hospital information systems that are expected to substantially reduce physicians’ physical and cognitive workload and improve patient safety. Order sets represent time interval-clustered order items, such as medications prescribed at hospital admission, that are administered to patients during their hospital stay. In this paper, we develop a mathematical programming model and an exact and a heuristic solution procedure with the objective of minimizing physicians’ cognitive workload associated with prescribing order sets. Furthermore, we provide structural insights into the problem which lead us to a valid lower bound on the order set size. In a case study using order data on Asthma patients with moderate complexity from a major pediatric hospital, we compare the hospital’s current solution with the exact and heuristic solutions on a variety of performance metrics. Our computational results confirm our lower bound and reveal that using a time interval decomposition approach substantially reduces computation times for the mathematical program, as does a K −means clustering based decomposition approach which, however, does not guarantee optimality because it violates the lower bound. The results of comparing the mathematical program with the current order set configuration in the hospital indicates that cognitive workload can be reduced by about 20.2% by allowing 1 to 5 order sets, respectively. The comparison of the K −means based decomposition with the hospital’s current configuration reveals a cognitive workload reduction of about 19.5%, also by allowing 1 to 5 order sets, respectively. We finally provide a decision support system to help practitioners analyze the current order set configuration, the results of the mathematical program and the heuristic approach.

Keywords: Healthcare information systems; Health informatics/health information systems/medical IS; Analytical modeling; Optimization; Heuristics (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://link.springer.com/10.1007/s10729-017-9406-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:hcarem:v:21:y:2018:i:2:d:10.1007_s10729-017-9406-6

Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10729

DOI: 10.1007/s10729-017-9406-6

Access Statistics for this article

Health Care Management Science is currently edited by Yasar Ozcan

More articles in Health Care Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:hcarem:v:21:y:2018:i:2:d:10.1007_s10729-017-9406-6