Combining machine learning and optimization for the operational patient-bed assignment problem
Fabian Schäfer,
Manuel Walther,
Dominik G. Grimm and
Alexander Hübner ()
Additional contact information
Fabian Schäfer: Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Supply Chain and Value Management
Manuel Walther: Catholic University of Eichstätt-Ingolstadt, Supply Chain Management & Operations
Dominik G. Grimm: Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Bioinformatics
Alexander Hübner: Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Supply Chain and Value Management
Health Care Management Science, 2023, vol. 26, issue 4, No 11, 785-806
Abstract:
Abstract Assigning inpatients to hospital beds impacts patient satisfaction and the workload of nurses and doctors. The assignment is subject to unknown inpatient arrivals, in particular for emergency patients. Hospitals, therefore, need to deal with uncertainty on actual bed requirements and potential shortage situations as bed capacities are limited. This paper develops a model and solution approach for solving the patient bed-assignment problem that is based on a machine learning (ML) approach to forecasting emergency patients. First, it contributes by improving the anticipation of emergency patients using ML approaches, incorporating weather data, time and dates, important local and regional events, as well as current and historical occupancy levels. Drawing on real-life data from a large case hospital, we were able to improve forecasting accuracy for emergency inpatient arrivals. We achieved up to 17% better root mean square error (RMSE) when using ML methods compared to a baseline approach relying on averages for historical arrival rates. We further show that the ML methods outperform time series forecasts. Second, we develop a new hyper-heuristic for solving real-life problem instances based on the pilot method and a specialized greedy look-ahead (GLA) heuristic. When applying the hyper-heuristic in test sets we were able to increase the objective function by up to 5.3% in comparison to the benchmark approach in [40]. A benchmark with a Genetic Algorithm shows also the superiority of the hyper-heuristic. Third, the combination of ML for emergency patient admission forecasting with advanced optimization through the hyper-heuristic allowed us to obtain an improvement of up to 3.3% on a real-life problem.
Keywords: Hospital bed management; Patient-room assignment; Stakeholder integration; Emergency forecasting; Emergency patient admissions; Machine learning; Operations research; Operations management (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s10729-023-09652-5 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:hcarem:v:26:y:2023:i:4:d:10.1007_s10729-023-09652-5
Ordering information: This journal article can be ordered from
http://www.springer.com/journal/10729
DOI: 10.1007/s10729-023-09652-5
Access Statistics for this article
Health Care Management Science is currently edited by Yasar Ozcan
More articles in Health Care Management Science from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().