A Novel Machine Learning Approach for Predicting the NIFTY50 Index in India
Pavan Kumar Nagula () and
Christos Alexakis
Additional contact information
Pavan Kumar Nagula: Rennes School of Business
Christos Alexakis: Rennes School of Business
International Advances in Economic Research, 2022, vol. 28, issue 3, No 6, 155-170
Abstract:
Abstract Over the past decade, extensive research on stock market prediction using machine learning models has been conducted. In this framework, different approaches for data standardisation methods have been used for financial time series analysis and to assess the impact of data standardisation on the final prediction outcome. The paper uses the feature-level optimal rolling-window batch data standardisation method to improve the machine learning model's predictive power significantly. Along with the standardisation method, the paper explores the performance of the automated feature interactions learner (Deep Cross Networks) effect on a plethora of technical indicators aiming at predicting the movements of the NIFTY50 index in India, as these predicted changes are reflected in options contracts. Feature-level optimal rolling window data standardisation can identify the optimal window of time such that the correlation between features and the response variable is maximized, with most features correlating at 0.7. In the experiment, 48% of important technical indicators negatively correlated with the response variable. The Deep Cross Network regression model combined with the optimal rolling window batch data standardisation method outperformed all other model configurations at weekly and monthly data frequency. It achieved a directional hit rate of 69.52% (weekly) and 79.17% (monthly) and root mean square error of 2.82 (weekly) and 5.01 (monthly), generating a profit 5.5 times (weekly) and 2.85 times (monthly) greater than the benchmark buy-and-hold strategy providing opposing evidence to the sub-martingale model.
Keywords: Efficient Market; Machine Learning; Technical Indicators Interactions; Deep Cross Networks; Rolling Window Data Standardisation; NIFTY50 (search for similar items in EconPapers)
JEL-codes: G13 G14 G17 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://link.springer.com/10.1007/s11294-022-09861-8 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:iaecre:v:28:y:2022:i:3:d:10.1007_s11294-022-09861-8
Ordering information: This journal article can be ordered from
http://www.springer.com/economics/journal/11294
DOI: 10.1007/s11294-022-09861-8
Access Statistics for this article
International Advances in Economic Research is currently edited by Katherine S. Virgo
More articles in International Advances in Economic Research from Springer, International Atlantic Economic Society Contact information at EDIRC.
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().