Data Envelopment Analysis with Reverse Inputs and Outputs
Herbert Lewis () and
Thomas Sexton ()
Journal of Productivity Analysis, 2004, vol. 21, issue 2, 113-132
Abstract:
Data envelopment analysis (DEA) assumes that inputs and outputs are measured on scales in which larger numerical values correspond to greater consumption of inputs and greater production of outputs. We present a class of DEA problems in which one or more of the inputs or outputs are naturally measured on scales in which higher numerical values represent lower input consumption or lower output production. We refer to such quantities as reverse inputs and reverse outputs. We propose to incorporate reverse inputs and outputs into a DEA model by returning to the basic principles that lead to the DEA model formulation. We compare our method to reverse scoring, the most commonly used approach, and demonstrate the relative advantages of our proposed technique. We use this concept to analyze all 30 Major League Baseball (MLB) organizations during the 1999 regular season to determine their on-field and front office relative efficiencies. Our on-field DEA model employs one output and two symmetrically defined inputs, one to measure offense and one to measure defense. The defensive measure is such that larger values correspond to worse defensive performance, rather than better, and hence is a reverse input. The front office model uses one input. Its outputs, one of which is a reverse output, are the inputs to the on-field model. We discuss the organizational implications of our results. Copyright Kluwer Academic Publishers 2004
Keywords: DEA; reverse inputs; reverse outputs; Major League Baseball (search for similar items in EconPapers)
Date: 2004
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://hdl.handle.net/10.1023/B:PROD.0000016868.69586.b4 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:jproda:v:21:y:2004:i:2:p:113-132
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11123/PS2
DOI: 10.1023/B:PROD.0000016868.69586.b4
Access Statistics for this article
Journal of Productivity Analysis is currently edited by William Greene, Chris O'Donnell and Victor Podinovski
More articles in Journal of Productivity Analysis from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().