Measuring the impact of R&D on Productivity from a Econometric Time Series Perspective
Kelvin Balcombe,
Alastair Bailey and
Iain Fraser
Journal of Productivity Analysis, 2005, vol. 24, issue 1, 49-72
Abstract:
In this paper we argue that the standard sequential reduction approach to modelling dynamic relationships may be sub-optimal when long lag lengths are required and especially when the intermediate lags may be less important. A flexible model search approach is adopted using the insights of Bayesian Model probabilities, and new information criteria based on forecasting performance. This approach is facilitated by exploiting Genetic Algorithms. Using data on U.K. and U.S. agriculture the bivariate time series relationship between R&D expenditure and productivity is analysed. Long lags are found in the relationship between R&D expenditures and productivity in the U.K. and in the U.S. which remain undiscovered when using the orthodox approach. This finding is of particular importance in the debate on the optimal level of public R&D funding. Copyright Springer Science+Business Media, Inc. 2005
Keywords: R&D; productivity; model search; genetic algorithms; agriculture (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11123-005-3040-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:jproda:v:24:y:2005:i:1:p:49-72
Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11123/PS2
DOI: 10.1007/s11123-005-3040-x
Access Statistics for this article
Journal of Productivity Analysis is currently edited by William Greene, Chris O'Donnell and Victor Podinovski
More articles in Journal of Productivity Analysis from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().