Economics at your fingertips  

In search for the most preferred solution in value efficiency analysis

Panagiotis Ravanos () and Giannis Karagiannis
Additional contact information
Panagiotis Ravanos: University of Macedonia

Journal of Productivity Analysis, 2022, vol. 58, issue 2, No 6, 203-220

Abstract: Abstract Choosing the Most Preferred Solution (MPS), namely a real or artificial Decision Making Unit (DMU) reflecting the decision maker’s preferences over the desirable structure of inputs and outputs, is of particular importance in Value Efficiency Analysis (VEA). In this paper, we review various MPS choices used in the VEA literature and propose some new, which rely respectively on the relative position of frontier DMUs, the Most Productive Scale Size (MPSS), the Average Production Unit (APU), and common vectors of weights. The suggested MPS choices reflect overall organizational goals such as the pursuit of scale economies and the maximization of structural efficiency, or the need to assess DMUs against common standards because of limited control over the resources allocated to them or autonomy in setting their own priorities. The potential implications of using different MPSs in VEA are illustrated by providing comparative empirical results using a dataset of 526 Greek cotton farms.

Keywords: Value efficiency analysis; Most preferred solution; DMU frontier position; Most productive scale size; Average production unit; Common weights (search for similar items in EconPapers)
JEL-codes: C14 C44 C61 D24 (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link) Abstract (text/html)
Access to full text is restricted to subscribers.

Related works:
Working Paper: In search for the Most Preferred Solution in Value Efficiency Analysis (2022) Downloads
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link:

Ordering information: This journal article can be ordered from
http://www.springer. ... cs/journal/11123/PS2

DOI: 10.1007/s11123-022-00645-0

Access Statistics for this article

Journal of Productivity Analysis is currently edited by William Greene, Chris O'Donnell and Victor Podinovski

More articles in Journal of Productivity Analysis from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

Page updated 2024-05-25
Handle: RePEc:kap:jproda:v:58:y:2022:i:2:d:10.1007_s11123-022-00645-0