Predicting House Prices Using Multiple Listings Data
Robin A Dubin
The Journal of Real Estate Finance and Economics, 1998, vol. 17, issue 1, 35-59
Abstract:
It is often necessary to accurately predict the price of a house between sales. One method of predicting house values is to use data on the characteristics of the area's housing stock to estimate a hedonic regression, using ordinary least squares (OLS) as the statistical technique. The coefficients of this regression are then used to produce the predicted house prices. However, this procedure ignores a potentially large source of information regarding house prices--the correlations existing between the prices of neighboring houses. The purpose of this article is to show how these correlations can be incorporated when estimating regression coefficients and when predicting house prices. The practical difficulties inherent in using a technique called kriging to predict house prices are discussed. The article concludes with an example of the procedure using multiple listings data from Baltimore. Copyright 1998 by Kluwer Academic Publishers
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (57)
Downloads: (external link)
http://journals.kluweronline.com/issn/0895-5638/contents link to full text (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:jrefec:v:17:y:1998:i:1:p:35-59
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11146/PS2
Access Statistics for this article
The Journal of Real Estate Finance and Economics is currently edited by Steven R. Grenadier, James B. Kau and C.F. Sirmans
More articles in The Journal of Real Estate Finance and Economics from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().