A universal lattice
Ren-Raw Chen and
Tyler Yang
Review of Derivatives Research, 1999, vol. 3, issue 2, 115-133
Abstract:
When valuing derivative contracts with lattice methods, one often needs different lattice structures for different stochastic processes, different parameter values, or even different time intervals to obtain positive probabilities. In view of this stability problem, in this paper, we derive a trinomial lattice structure that can be universally applied to any diffusion process for any set of parameter values at any given time interval. It is particularly useful to the processes that cannot be transformed into constant diffusion. This lattice structure is unique in that it does not require branches to recombine but allows the lattice to freely evolve within the prespecified state space. This is in spirit similar to the implicit finite difference method. We demonstrate that this lattice model is easy to follow and program. The universal lattice is applied to time and state dependent processes that have recently become popular in pricing interest rate derivatives. Numerical examples are provided to demonstrate the mechanism of the model. Copyright Kluwer Academic Publishers 1999
Date: 1999
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1023/A:1009646809675 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:revdev:v:3:y:1999:i:2:p:115-133
Ordering information: This journal article can be ordered from
http://www.springer. ... 29/journal/11147/PS2
DOI: 10.1023/A:1009646809675
Access Statistics for this article
Review of Derivatives Research is currently edited by Gurdip Bakshi and Dilip Madan
More articles in Review of Derivatives Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().