EconPapers    
Economics at your fingertips  
 

A Comparison of Option Prices Under Different Pricing Measures in a Stochastic Volatility Model with Correlation

Vicky Henderson (), David Hobson, Sam Howison and Tino Kluge

Review of Derivatives Research, 2005, vol. 8, issue 1, 5-25

Abstract: This paper investigates option prices in an incomplete stochastic volatility model with correlation. In a general setting, we prove an ordering result which says that prices for European options with convex payoffs are decreasing in the market price of volatility risk. As an example, and as our main motivation, we investigate option pricing under the class of q-optimal pricing measures. The q-optimal pricing measure is related to the marginal utility indifference price of an agent with constant relative risk aversion. Using the ordering result, we prove comparison theorems between option prices under the minimal martingale, minimal entropy and variance-optimal pricing measures. If the Sharpe ratio is deterministic, the comparison collapses to the well known result that option prices computed under these three pricing measures are the same. As a concrete example, we specialize to a variant of the Hull-White or Heston model for which the Sharpe ratio is increasing in volatility. For this example we are able to deduce option prices are decreasing in the parameter q. Numerical solution of the pricing pde corroborates the theory and shows the magnitude of the differences in option price due to varying q. Copyright Springer Science + Business Media, Inc. 2005

Keywords: stochastic volatility; pricing measure; market price of volatility risk; Heston model; Hull White model (search for similar items in EconPapers)
Date: 2005
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://hdl.handle.net/10.1007/s11147-005-1005-x (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:kap:revdev:v:8:y:2005:i:1:p:5-25

Ordering information: This journal article can be ordered from
http://www.springer. ... 29/journal/11147/PS2

DOI: 10.1007/s11147-005-1005-x

Access Statistics for this article

Review of Derivatives Research is currently edited by Gurdip Bakshi and Dilip Madan

More articles in Review of Derivatives Research from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:kap:revdev:v:8:y:2005:i:1:p:5-25