Measurement Error and Nonlinearity in the Earnings-Returns Relation
Messod D Beneish and
Campbell Harvey
Review of Quantitative Finance and Accounting, 1998, vol. 11, issue 3, 219-47
Abstract:
There is a long history of research which examines the relation between unexpected earnings and unexpected returns on common stock. Early literature used simple linear regression models to describe this relation. Recently, a number of authors have proposed nonlinear models. These authors find that the earnings-returns relation is approximately linear for small changes but is 'S'-shaped globally. However, unexpected earnings are generated by the sum of a measurement error and a true earnings innovation, so the apparent nonlinearity could be an artifact of nonlinearity in the measurement errors. Using a research design that minimizes the presence of measurement errors, we provide evidence consistent with the hypothesis that measurement errors contribute to the nonlinearities in the earnings-returns relation. While we are not suggesting that the earnings-returns relation is linear, our evidence suggests that there is no advantage to using a nonlinear model for large firms that are widely followed by analysts. Copyright 1998 by Kluwer Academic Publishers
Date: 1998
References: Add references at CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
http://journals.kluweronline.com/issn/0924-865X/contents link to full text (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:rqfnac:v:11:y:1998:i:3:p:219-47
Ordering information: This journal article can be ordered from
http://www.springer.com/finance/journal/11156/PS2
Access Statistics for this article
Review of Quantitative Finance and Accounting is currently edited by Cheng-Few Lee
More articles in Review of Quantitative Finance and Accounting from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().