The Estimation of Systematic Risk under Differentiated Risk Aversion: A Mean-Extended Gini Approach
Russell B Gregory-Allen and
Haim Shalit
Review of Quantitative Finance and Accounting, 1999, vol. 12, issue 2, 135-57
Abstract:
This paper examines a mean-Gini model of systematic risk estimation that resolves some econometric problems with mean-variance beta estimation and allows for heterogeneous risk aversion across investors. Using the mean-extended Gini (MEG) model, we estimate systematic risks for different degrees of risk aversion. MEG betas are shown to be instrumental variable estimators that provide econometric solutions to biases generated by the estimation of mean-variance (MV) betas. When security returns are not normally distributed, MEG betas are proved to differ from MV betas. We design an econometric test that assesses whether these differences are significant. As an application using daily returns, we estimate MEG and MV betas for U.S. securities. Copyright 1999 by Kluwer Academic Publishers
Date: 1999
References: Add references at CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://journals.kluweronline.com/issn/0924-865X/contents link to full text (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:rqfnac:v:12:y:1999:i:2:p:135-57
Ordering information: This journal article can be ordered from
http://www.springer.com/finance/journal/11156/PS2
Access Statistics for this article
Review of Quantitative Finance and Accounting is currently edited by Cheng-Few Lee
More articles in Review of Quantitative Finance and Accounting from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().