The limitations of the Arrovian consistency of domains with a fixed preference
James Nguyen ()
Additional contact information
James Nguyen: University College London
Theory and Decision, 2019, vol. 87, issue 2, No 4, 183-199
Abstract:
Abstract In this paper I investigate the properties of social welfare functions defined on domains where the preferences of one agent remain fixed. Such a domain is a degenerate case of those investigated, and proved Arrow consistent, by Sakai and Shimoji (Soc Choice Welf 26(3):435–445, 2006). Thus, they admit functions from them to a social preference that satisfy Arrow’s conditions of Weak Pareto, Independence of Irrelevant Alternatives, and Non-dictatorship. However, I prove that according to any function that satisfies these conditions on such a domain, for any triple of alternatives, if the agent with the fixed preferences does not determine the social preference on any pair of them, then some other agent determines the social preference on the entire triple.
Keywords: Social choice; Arrow; Fixed preferences; Restricted domains (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11238-019-09702-x Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:theord:v:87:y:2019:i:2:d:10.1007_s11238-019-09702-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ry/journal/11238/PS2
DOI: 10.1007/s11238-019-09702-x
Access Statistics for this article
Theory and Decision is currently edited by Mohammed Abdellaoui
More articles in Theory and Decision from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().