Making use of respondent reported processing information to understand attribute importance: a latent variable scaling approach
Stephane Hess () and
David Hensher
Transportation, 2013, vol. 40, issue 2, 397-412
Abstract:
In recent years we have seen an explosion of research seeking to understand the role that rules and heuristics might play in improving the predictive capability of discrete choice models, as well as delivering willingness to pay estimates for specific attributes that may (and often do) differ significantly from estimates based on a model specification that assumes all attributes are relevant. This paper adds to that literature in one important way—it explicitly recognises the endogeneity issues raised by typical attribute non-attendance treatments and conditions attribute parameters on underlying unobserved attribute importance ratings. We develop a hybrid model system involving attribute processing and outcome choice models in which latent variables are introduced as explanatory variables in both parts of the model, explaining the answers to attribute processing questions and explaining heterogeneity in marginal sensitivities in the choice model. The resulting empirical model explains how lower latent attribute importance leads to a higher probability of indicating that an attribute was ignored or that it was ranked as less important, as well as increasing the probability of a reduced value for the associated marginal utility coefficient in the choice model. The model does so by treating the answers to information processing questions as dependent rather than explanatory variables, hence avoiding potential risk of endogeneity bias and measurement error. Copyright Springer Science+Business Media, LLC. 2013
Keywords: Information processing; Attribute ignoring; Non-attendance; Attribute importance; Attribute relevance; Stated choice (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (28)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11116-012-9420-y (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:40:y:2013:i:2:p:397-412
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-012-9420-y
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().