Discovering urban activity patterns in cell phone data
Peter Widhalm (),
Yingxiang Yang,
Michael Ulm,
Shounak Athavale and
Marta González
Transportation, 2015, vol. 42, issue 4, 597-623
Abstract:
Massive and passive data such as cell phone traces provide samples of the whereabouts and movements of individuals. These are a potential source of information for models of daily activities in a city. The main challenge is that phone traces have low spatial precision and are sparsely sampled in time, which requires a precise set of techniques for mining hidden valuable information they contain. Here we propose a method to reveal activity patterns that emerge from cell phone data by analyzing relational signatures of activity time, duration, and land use. First, we present a method of how to detect stays and extract a robust set of geolocated time stamps that represent trip chains. Second, we show how to cluster activities by combining the detected trip chains with land use data. This is accomplished by modeling the dependencies between activity type, trip scheduling, and land use types via a Relational Markov Network. We apply the method to two different kinds of mobile phone datasets from the metropolitan areas of Vienna, Austria and Boston, USA. The former data includes information from mobility management signals, while the latter are usual Call Detail Records. The resulting trip sequence patterns and activity scheduling from both datasets agree well with their respective city surveys, and we show that the inferred activity clusters are stable across different days and both cities. This method to infer activity patterns from cell phone data allows us to use these as a novel and cheaper data source for activity-based modeling and travel behavior studies. Copyright Springer Science+Business Media New York 2015
Keywords: Cell phone data; Mobility patterns; Activity-based models; Activity recognition; Unsupervised learning; Relational Markov network (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (30)
Downloads: (external link)
http://hdl.handle.net/10.1007/s11116-015-9598-x (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:42:y:2015:i:4:p:597-623
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-015-9598-x
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().