Learning daily activity patterns with probabilistic grammars
Siyu Li () and
Lee Der-Horng ()
Additional contact information
Siyu Li: National University of Singapore
Lee Der-Horng: National University of Singapore
Transportation, 2017, vol. 44, issue 1, No 3, 49-68
Abstract:
Abstract Daily activity pattern is the reflection and abstraction of actual individual activity participation on daily basis. It carries information on activity type, frequency and sequence. Preference of daily activity patterns varies among population, and thus can be interpreted as personal life styles. This paper advances studies on human daily activity patterns by providing new perspective and methodology in the modeling and learning of daily activity patterns using probabilistic context-free grammars. In this paper, similarities between daily activity pattern—which is defined as activity sequence—and language are explored. We developed context-free grammars to parse and generate daily activity patterns. To replicate people’s heterogeneity in selecting daily activity patterns, we introduced probabilistic context-free grammars and proposed several formulations to estimate the probability of a context-free grammar with daily activity patterns observed in household travel survey. We conducted experiments on the proposed formulations, finding that under proper context-free grammar and problem formulation, the estimated probabilistic context-free grammar is able to reproduce the observed pattern distribution in household travel survey with satisfactory precision. Practically, the proposed methodology sheds light on the issue of generating stochastic and accessibility-dependent choice sets for daily activity pattern models in certain activity-based modeling frameworks.
Keywords: Daily activity pattern; Activity sequence; Context-free grammar; Probabilistic grammar; Activity-based modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://link.springer.com/10.1007/s11116-015-9622-1 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:44:y:2017:i:1:d:10.1007_s11116-015-9622-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-015-9622-1
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().