Tracking a system of shared autonomous vehicles across the Austin, Texas network using agent-based simulation
Jun Liu (),
Kara M. Kockelman (),
Patrick M. Boesch () and
Francesco Ciari ()
Additional contact information
Jun Liu: The University of Texas at Austin
Kara M. Kockelman: The University of Texas at Austin
Patrick M. Boesch: IVT, ETH Zurich
Francesco Ciari: IVT, ETH Zurich
Transportation, 2017, vol. 44, issue 6, No 2, 1278 pages
Abstract:
Abstract This study provides a large-scale micro-simulation of transportation patterns in a metropolitan area when relying on a system of shared autonomous vehicles (SAVs). The six-county region of Austin, Texas is used for its land development patterns, demographics, networks, and trip tables. The agent-based MATSim toolkit allows modelers to track individual travelers and individual vehicles, with great temporal and spatial detail. MATSim’s algorithms help improve individual travel plans (by changing tour and trip start times, destinations, modes, and routes). Here, the SAV mode requests were simulated through a stochastic process for four possible fare levels: $0.50, $0.75, $1, and $1.25 per trip-mile. These fares resulted in mode splits of 50.9, 12.9, 10.5, and 9.2% of the region’s person-trips, respectively. Mode choice results show longer-distance travelers preferring SAVs to private, human-driven vehicles (HVs)—thanks to the reduced burden of SAV travel (since one does not have to drive the vehicle). For travelers whose households do not own an HV, SAVs (rather than transit, walking and biking) appear preferable for trips under 10 miles, which is the majority of those travelers’ trip-making. It may be difficult for traditional transit services and operators to survive once SAVs become available in regions like Austin, where dedicated rail lines and bus lanes are few. Simulation of SAV fleet operations suggest that higher fare rates allow for greater vehicle replacement (ranging from 5.6 to 7.7 HVs per SAV, assuming that the average SAV serves 17–20 person-trips per day); when fares rise, travel demands shift away from longer trip distances. Empty vehicle miles traveled by the fleet of SAVs ranged from 7.8 to 14.2%, across the scenarios in this study. Implications of mobility and sustainability benefits of SAVs are also discussed in the paper.
Keywords: Shared autonomous vehicles; Car-sharing; Agent-based simulation; Mode choice; Travel demand modeling (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://link.springer.com/10.1007/s11116-017-9811-1 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:44:y:2017:i:6:d:10.1007_s11116-017-9811-1
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-017-9811-1
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().