Travel demand forecasts improved by using cross-sectional data from multiple time points: enhancing their quality by linkage to gross domestic product
Nobuhiro Sanko ()
Additional contact information
Nobuhiro Sanko: Kobe University
Transportation, 2018, vol. 45, issue 3, No 9, 905-918
Abstract:
Abstract Forecasts using disaggregate travel demand models are often based on data from the most recent time point, even when cross-sectional data is available from multiple time points. However, this is not a good use of the data. In a previous study, the author proposed a method that jointly utilises cross-sectional data from multiple time points in which parameters are assumed to be functions of time (year), meaning that the parameter values vary over time. The method was applied to journey-to-work mode choice analyses for Nagoya, Japan. Behaviours in 2001 were forecast using one model with only the most recent 1991 dataset and other models that combined datasets for 1971, 1981, and 1991. The latter models outperformed the former model, which demonstrated the applicability of the proposed method. Although the functions of time ascribe the parameter changes to the trends over time, the theoretical underpinnings needed further investigation. The aim of this study is to analyse the same dataset used in the author’s previous study, but express the parameters as functions of gross domestic product (GDP) per capita. This method has fewer problems related to its theoretical underpinnings, since the parameter changes are explained by the effects of economic conditions. The functions of GDP per capita produced better forecasts than the functions of time. In addition, the functions of GDP per capita present fewer problems when choosing functional forms and extrapolating into the distant future/past and even to other areas. Sensitivity analysis with respect to uncertainties in the future GDP per capita showed that the proposed models are practical.
Keywords: Repeated cross-sectional data; Forecasting; Transferability; Parameter change; Gross domestic product per capita; Mode choice model (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11116-016-9755-x Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:45:y:2018:i:3:d:10.1007_s11116-016-9755-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-016-9755-x
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().