Understanding urban mobility patterns from a spatiotemporal perspective: daily ridership profiles of metro stations
Zuoxian Gan (),
Min Yang (),
Tao Feng () and
Harry Timmermans
Additional contact information
Zuoxian Gan: Southeast University
Min Yang: Southeast University
Tao Feng: Eindhoven University of Technology
Harry Timmermans: Eindhoven University of Technology
Transportation, 2020, vol. 47, issue 1, No 12, 315-336
Abstract:
Abstract Smart card data derived from automatic fare collection (AFC) systems of public transit enable us to study resident movement from a macro perspective. The rhythms of traffic generated by different land uses differ, reflecting differences in human activity patterns. Thus, an understanding of daily ridership and mobility patterns requires an understanding of the relationship between daily ridership patterns and characteristics of stations and their direct environment. Unfortunately, few studies have investigated this relationship. This study aims to propose a framework of identifying urban mobility patterns and urban dynamics from a spatiotemporal perspective and pointing out the linkages between mobility and land cover/land use (LCLU). Relying on 1 month’s transactions data from the AFC system of Nanjing metro, the 110 metro stations are classified into 7 clusters named as employment-oriented stations, residential-oriented stations, spatial mismatched stations, etc., each characterized by a distinct ridership pattern (combining boarding and alighting). A comparison of the peak hourly ridership of the seven clusters is conducted to verify whether the clustering results are reasonable or not. Finally, a multinomial logit model is used to estimate the relationship between characteristics of the local environment and cluster membership. Results show that the classification based on ridership patterns leads to meaningful interpretable clusters and that significant associations exist between local LCLU characteristics, distance to the city center and cluster membership. The analytical framework and findings may be beneficial for improving service efficiency of public transportation and urban planning.
Keywords: Urban mobility; Ridership patterns; Smart card data; Station clustering; LCLU (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
http://link.springer.com/10.1007/s11116-018-9885-4 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:47:y:2020:i:1:d:10.1007_s11116-018-9885-4
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-018-9885-4
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().