A random heaping model of annual vehicle kilometres travelled considering heterogeneous approximation in reporting
Toshiyuki Yamamoto (),
Jean-Loup Madre (),
Matthieu Lapparent () and
Roger Collet ()
Additional contact information
Toshiyuki Yamamoto: Nagoya University
Jean-Loup Madre: French Institute of Science and Technology for Transport, Development and Networks
Matthieu Lapparent: University of Applied Sciences and Arts of Western Switzerland (HES-SO)
Roger Collet: French Institute of Science and Technology for Transport, Development and Networks
Transportation, 2020, vol. 47, issue 3, No 1, 1027-1045
Abstract:
Abstract Annual vehicle kilometres travelled (VKT) is a long used index of car use. Usually, the annual VKT, as reported by respondents, is used for the analysis. But the reported values almost systematically contain approximations such as rounding and heaping. We apply a latent class approach in modelling VKT to account for this problem developed by Heitjan and Rubin (J Am Stat Assoc 85(410):304–314, 1990; Ann Stat 19(4):2244–2253, 1991). Our model takes the form of a mixture of ordered probit models. The level of coarseness in reporting is considered as a latent variable that determines a category the respondent may belong to. Ordered response probit models of VKT are developed for each category. Thresholds are predetermined and model the level of coarseness that relates to the category. Annual VKT is itself assumed to affect the level of coarseness in reporting, thus included as an explanatory variable of the latent coarseness model. It is also modelled by an ordered probit model. The data set used in this study is a panel data of French households’ vehicle ownership (Parc-Auto panel survey). The results confirm that the longer VKT results in a larger coarseness in the report. The results also suggest that the coarseness in the report of VKT is larger for commuting car than others. The coefficient estimates on the VKT function are not statistically different from those estimated by conventional regression model of VKT. However, the estimated variance of the error term and the standard errors of the coefficient estimates in the VKT function for the proposed model are smaller than those for conventional regression model, implying that the proposed model is more efficient to investigate the effect of the explanatory variables on VKT than the conventional regression model.
Keywords: Bivariate ordered probit model; Coarseness; Latent class model; Rounding; Vehicle use (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11116-018-9933-0 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:47:y:2020:i:3:d:10.1007_s11116-018-9933-0
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-018-9933-0
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().