A LiDAR-based methodology for monitoring and collecting microscopic bicycle flow parameters on bicycle facilities
Ehsan Nateghinia (),
David Beitel (),
Asad Lesani () and
Luis F. Miranda-Moreno ()
Additional contact information
Ehsan Nateghinia: McGill University
David Beitel: McGill University
Asad Lesani: McGill University
Luis F. Miranda-Moreno: McGill University
Transportation, 2024, vol. 51, issue 1, No 6, 129-153
Abstract:
Abstract Research on microscopic bicycle flow parameters (speed, headway, spacing, and density) is limited given the lack of methods to collect data in large quantities automatically. This paper introduces a novel methodology to compute bicycle flow parameters based on a LiDAR system composed of two single-beam sensors. Instantaneous mid-block raw speed for each cyclist in the traffic stream is measured using LiDAR sensor signals at seven bidirectional and three unidirectional cycling facilities. A Multilayer Perception Neural Network is proposed to improve the accuracy of speed measures. The LiDAR system computes the headway and spacing between consecutive cyclists using time-stamped detections and speed values. Estimation of density is obtained using spacing. For model calibration and testing, 101 hours of video data collected at ten mid-block sites are used. The performance of the cyclist speed estimation is evaluated by comparing it to ground truth video. When the dataset is randomly split into training and test sets, the RMSE and MAPE of the speed estimation method on the test set are 0.61 m/s and 7.1%, respectively. In another scenario, when the model is trained with nine of the ten sites and tested on data from the remaining site, the RMSE and MAPE are 0.69 m/s and 8.2%, respectively. Lastly, the relationships governing hourly flow rate, average speed, and estimated density are studied. The data were collected during the peak cycling season at high-flow sites in Montreal, Canada; However, none of the facilities reached or neared capacity.
Keywords: LiDAR sensor; Microscopic cyclist flow parameters; Cyclist speed; Automated extraction; Alternative technologies (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11116-022-10322-8 Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:51:y:2024:i:1:d:10.1007_s11116-022-10322-8
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-022-10322-8
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().