Flow count data-driven static traffic assignment models through network modularity partitioning
Alexander Roocroft (),
Giuliano Punzo and
Muhamad Azfar Ramli
Additional contact information
Alexander Roocroft: University of Sheffield
Giuliano Punzo: University of Sheffield
Muhamad Azfar Ramli: A*STAR
Transportation, 2025, vol. 52, issue 1, No 7, 185-214
Abstract:
Abstract Accurate static traffic assignment models are important tools for the assessment of strategic transportation policies. In this article we present a novel approach to partition road networks through network modularity to produce data-driven static traffic assignment models from loop detector data on large road systems. The use of partitioning allows the estimation of the key model input of Origin–Destination demand matrices from flow counts alone. Previous network tomography-based demand estimation techniques have been limited by the network size. The amount of partitioning changes the Origin–Destination estimation optimisation problems to different levels of computational difficulty. Different approaches to utilising the partitioning were tested, one which degenerated the road network to the scale of the partitions and others which left the network intact. Applied to a subnetwork of England’s Strategic Road Network and other test networks, our results for the degenerate case showed flow and travel time errors are reasonable with a small amount of degeneration. The results for the non-degenerate cases showed that similar errors in model prediction with lower computation requirements can be obtained when using large partitions compared with the non-partitioned case. This work could be used to improve the effectiveness of national road systems planning and infrastructure models.
Keywords: Traffic assignment; Origin–Destination demand estimation; Community detection (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://link.springer.com/10.1007/s11116-023-10416-x Abstract (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:kap:transp:v:52:y:2025:i:1:d:10.1007_s11116-023-10416-x
Ordering information: This journal article can be ordered from
http://www.springer. ... ce/journal/11116/PS2
DOI: 10.1007/s11116-023-10416-x
Access Statistics for this article
Transportation is currently edited by Kay W. Axhausen
More articles in Transportation from Springer
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().