Evaluación asimétrica de una red neuronal: aplicación al caso de la inflación en Colombia
María Clara Aristizábal Restrepo ()
Additional contact information
María Clara Aristizábal Restrepo: Acciones, Bolsa y Renta, Medellín, Colombia, Postal: calle 50 No. 50-21, piso 16, Ed. Banco de la República, Medellín, Colombia
Lecturas de Economía, 2006, issue 65, 73-116
Abstract:
The objective of the present work is to explore the non-linear relationship between money and inflation in Colombia through an artificial neural network using monthly information for the variation of the consumer price index and the monetary aggregate M3 since January 1982 through February 2005. Artificial neural networks turn up as an excellent alternative for monetary authorities to count on the best models to forecast inflation and guide their policy decisions. This article incorporates some innovations in money and inflation modeling that allow to generate more reliable forecasts given that the model approximates reality with greater accuracy
Keywords: artificial neural network; non-linearity; hidden unit; activation function; rolling test; asymmetric lost function. (search for similar items in EconPapers)
JEL-codes: C53 D87 (search for similar items in EconPapers)
Date: 2006
References: Add references at CitEc
Citations:
Downloads: (external link)
https://revistas.udea.edu.co/index.php/lecturasdeeconomia/issue/view/313 (application/pdf)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:lde:journl:y:2006:i:65:p:73-116
Ordering information: This journal article can be ordered from
Lecturas de Economía, Departamento de Economía, Calle 67, 53-108, Medellin 050010, Colombia.
Access Statistics for this article
Lecturas de Economía is currently edited by Carlos Andrés Vasco Correa
More articles in Lecturas de Economía from Universidad de Antioquia, Departamento de Economía Contact information at EDIRC.
Bibliographic data for series maintained by Carlos Andrés Vasco Correa ().