Nonparametric estimate remarks
Poznámky k neparametrickým odhadům
Jitka Poměnková
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2006, vol. 54, issue 3, 93-100
Abstract:
Kernel smoothers belong to the most popular nonparametric functional estimates. They provide a simple way of finding structure in data. The idea of the kernel smoothing can be applied to a simple fixed design regression model. This article is focused on kernel smoothing for fixed design regresion model with three types of estimators, the Gasser-Müller estimator, the Nadaraya-Watson estimator and the local linear estimator. At the end of this article figures for ilustration of desribed estimators on simulated and real data sets are shown.
Keywords: kernel; Gasser-Müller estimator; Nadaraya-Watson estimator; Local linear estimator (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://acta.mendelu.cz/doi/10.11118/actaun200654030093.html (text/html)
http://acta.mendelu.cz/doi/10.11118/actaun200654030093.pdf (application/pdf)
free of charge
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:mup:actaun:actaun_2006054030093
DOI: 10.11118/actaun200654030093
Access Statistics for this article
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis is currently edited by Markéta Havlásková
More articles in Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis from Mendel University Press
Bibliographic data for series maintained by Ivo Andrle ().