EconPapers    
Economics at your fingertips  
 

Nonparametric estimate remarks

Poznámky k neparametrickým odhadům

Jitka Poměnková

Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 2006, vol. 54, issue 3, 93-100

Abstract: Kernel smoothers belong to the most popular nonparametric functional estimates. They provide a simple way of finding structure in data. The idea of the kernel smoothing can be applied to a simple fixed design regression model. This article is focused on kernel smoothing for fixed design regresion model with three types of estimators, the Gasser-Müller estimator, the Nadaraya-Watson estimator and the local linear estimator. At the end of this article figures for ilustration of desribed estimators on simulated and real data sets are shown.

Keywords: kernel; Gasser-Müller estimator; Nadaraya-Watson estimator; Local linear estimator (search for similar items in EconPapers)
Date: 2006
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://acta.mendelu.cz/doi/10.11118/actaun200654030093.html (text/html)
http://acta.mendelu.cz/doi/10.11118/actaun200654030093.pdf (application/pdf)
free of charge

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:mup:actaun:actaun_2006054030093

DOI: 10.11118/actaun200654030093

Access Statistics for this article

Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis is currently edited by Markéta Havlásková

More articles in Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis from Mendel University Press
Bibliographic data for series maintained by Ivo Andrle ().

 
Page updated 2025-03-19
Handle: RePEc:mup:actaun:actaun_2006054030093