EconPapers    
Economics at your fingertips  
 

Disturbance suppresses the aboveground carbon sink in North American boreal forests

Jonathan A. Wang (), Alessandro Baccini, Mary Farina, James T. Randerson and Mark A. Friedl
Additional contact information
Jonathan A. Wang: University of California
Alessandro Baccini: Boston University
Mary Farina: The Woodwell Climate Research Center
James T. Randerson: University of California
Mark A. Friedl: Boston University

Nature Climate Change, 2021, vol. 11, issue 5, 435-441

Abstract: Abstract Climate change is altering vegetation and disturbance dynamics in boreal ecosystems. However, the aggregate impact of these changes on boreal carbon budgets is not well understood. Here we combined multiple satellite datasets to estimate annual stocks and changes in aboveground biomass (AGB) across boreal northwestern North America. From 1984 to 2014, the 2.82 × 106 km2 study region gained 434 ± 176 Tg of AGB. Fires resulted in losses of 789 ± 48 Tg, which were mostly compensated by post-fire recovery of 642 ± 86 Tg. Timber harvests contributed to losses of 74 ± 5 Tg, which were partly offset by post-harvest recovery of 32 ± 9 Tg. Earth system models overestimated AGB accumulation by a factor of 3 (+1,519 ± 171 Tg), which suggests that these models overestimate the terrestrial carbon sink in boreal ecosystems and highlights the need to improve representation of fire and other disturbance processes in these models.

Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41558-021-01027-4 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:11:y:2021:i:5:d:10.1038_s41558-021-01027-4

Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/

DOI: 10.1038/s41558-021-01027-4

Access Statistics for this article

Nature Climate Change is currently edited by Bronwyn Wake

More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcli:v:11:y:2021:i:5:d:10.1038_s41558-021-01027-4