EconPapers    
Economics at your fingertips  
 

Unique thermal sensitivity imposes a cold-water energetic barrier for vertical migrators

Brad A. Seibel () and Matthew A. Birk
Additional contact information
Brad A. Seibel: University of South Florida
Matthew A. Birk: Saint Francis University

Nature Climate Change, 2022, vol. 12, issue 11, 1052-1058

Abstract: Abstract Alterations of marine species’ ranges with climate change are often attributed to oxygen limitation in warming oceans. Here we report unique metabolic temperature sensitivities for the myriad of vertically migrating oceanic species that daily cross depth-related gradients in temperature and oxygen. In these taxa, selection favours high metabolic activity for predator–prey interactions in warm shallow water and hypoxia tolerance in the cold at depth. These diverging selective pressures result in thermal insensitivity of oxygen supply capacity and enhanced thermal sensitivity of active metabolic rate. Aerobic scope is diminished in the cold, well beyond thermodynamic influences and regardless of ambient oxygen levels, explaining the native distributions of tropical migrators and their recent range expansions following warming events. Cold waters currently constitute an energetic barrier to latitudinal range expansion in vertical migrators. As warming due to climate change approaches, and eventually surpasses, temperatures seen during past warming events, this energetic barrier will be relieved.

Date: 2022
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41558-022-01491-6 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:12:y:2022:i:11:d:10.1038_s41558-022-01491-6

Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/

DOI: 10.1038/s41558-022-01491-6

Access Statistics for this article

Nature Climate Change is currently edited by Bronwyn Wake

More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcli:v:12:y:2022:i:11:d:10.1038_s41558-022-01491-6