EconPapers    
Economics at your fingertips  
 

Arctic soil methane sink increases with drier conditions and higher ecosystem respiration

Carolina Voigt (), Anna-Maria Virkkala, Gabriel Hould Gosselin, Kathryn A. Bennett, T. Andrew Black, Matteo Detto, Charles Chevrier-Dion, Georg Guggenberger, Wasi Hashmi, Lukas Kohl, Dan Kou, Charlotte Marquis, Philip Marsh, Maija E. Marushchak, Zoran Nesic, Hannu Nykänen, Taija Saarela, Leopold Sauheitl, Branden Walker, Niels Weiss, Evan J. Wilcox and Oliver Sonnentag
Additional contact information
Carolina Voigt: University of Eastern Finland
Anna-Maria Virkkala: Woodwell Climate Research Center
Gabriel Hould Gosselin: Université de Montréal
Kathryn A. Bennett: Université de Montréal
T. Andrew Black: University of British Columbia
Matteo Detto: Princeton University
Charles Chevrier-Dion: Université de Montréal
Georg Guggenberger: Leibniz Universität Hannover
Wasi Hashmi: University of Eastern Finland
Lukas Kohl: University of Eastern Finland
Dan Kou: University of Eastern Finland
Charlotte Marquis: Université de Montréal
Philip Marsh: Wilfrid Laurier University
Maija E. Marushchak: University of Eastern Finland
Zoran Nesic: University of British Columbia
Hannu Nykänen: University of Eastern Finland
Taija Saarela: University of Eastern Finland
Leopold Sauheitl: Leibniz Universität Hannover
Branden Walker: Wilfrid Laurier University
Niels Weiss: Wilfrid Laurier University
Evan J. Wilcox: Wilfrid Laurier University
Oliver Sonnentag: Université de Montréal

Nature Climate Change, 2023, vol. 13, issue 10, 1095-1104

Abstract: Abstract Arctic wetlands are known methane (CH4) emitters but recent studies suggest that the Arctic CH4 sink strength may be underestimated. Here we explore the capacity of well-drained Arctic soils to consume atmospheric CH4 using >40,000 hourly flux observations and spatially distributed flux measurements from 4 sites and 14 surface types. While consumption of atmospheric CH4 occurred at all sites at rates of 0.092 ± 0.011 mgCH4 m−2 h−1 (mean ± s.e.), CH4 uptake displayed distinct diel and seasonal patterns reflecting ecosystem respiration. Combining in situ flux data with laboratory investigations and a machine learning approach, we find biotic drivers to be highly important. Soil moisture outweighed temperature as an abiotic control and higher CH4 uptake was linked to increased availability of labile carbon. Our findings imply that soil drying and enhanced nutrient supply will promote CH4 uptake by Arctic soils, providing a negative feedback to global climate change.

Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41558-023-01785-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:13:y:2023:i:10:d:10.1038_s41558-023-01785-3

Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/

DOI: 10.1038/s41558-023-01785-3

Access Statistics for this article

Nature Climate Change is currently edited by Bronwyn Wake

More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcli:v:13:y:2023:i:10:d:10.1038_s41558-023-01785-3