Accounting for Pacific climate variability increases projected global warming
Yongxiao Liang (),
Nathan P. Gillett and
Adam H. Monahan
Additional contact information
Yongxiao Liang: University of Victoria
Nathan P. Gillett: Environment and Climate Change Canada
Adam H. Monahan: University of Victoria
Nature Climate Change, 2024, vol. 14, issue 6, 608-614
Abstract:
Abstract Observational constraint methods based on the relationship between the past global warming trend and projected warming across climate models were used to reduce uncertainties in projected warming by the Intergovernmental Panel on Climate Change. Internal climate variability in the eastern tropical Pacific associated with the so-called pattern effect weakens this relationship and has reduced the observed warming trend over recent decades. Here we show that regressing out this variability before applying the observed global mean warming trend as a constraint results in higher and narrower twenty-first century warming ranges than other methods. Whereas the Intergovernmental Panel on Climate Change assessed that warming is unlikely to exceed 2 °C under a low-emissions scenario, our results indicate that warming is likely to exceed 2 °C under the same scenario, and hence, limiting global warming to well below 2 °C will be harder than previously anticipated. However, the reduced uncertainties in these projections could benefit adaptation planning.
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41558-024-02017-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:14:y:2024:i:6:d:10.1038_s41558-024-02017-y
Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/
DOI: 10.1038/s41558-024-02017-y
Access Statistics for this article
Nature Climate Change is currently edited by Bronwyn Wake
More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().