Reducing sectoral hard-to-abate emissions to limit reliance on carbon dioxide removal
Oreane Y. Edelenbosch (),
Andries F. Hof,
Maarten Berg,
Harmen Sytze Boer,
Hsing-Hsuan Chen,
Vassilis Daioglou,
Mark M. Dekker,
Jonathan C. Doelman,
Michel G. J. Elzen,
Mathijs Harmsen,
Stratos Mikropoulos,
Mariësse A. E. Sluisveld,
Elke Stehfest,
Isabela S. Tagomori,
Willem-Jan Zeist and
Detlef P. Vuuren
Additional contact information
Oreane Y. Edelenbosch: Utrecht Universiteit
Andries F. Hof: Utrecht Universiteit
Maarten Berg: PBL Netherlands Environmental Assessment Agency
Harmen Sytze Boer: PBL Netherlands Environmental Assessment Agency
Hsing-Hsuan Chen: Utrecht Universiteit
Vassilis Daioglou: Utrecht Universiteit
Mark M. Dekker: Utrecht Universiteit
Jonathan C. Doelman: PBL Netherlands Environmental Assessment Agency
Michel G. J. Elzen: PBL Netherlands Environmental Assessment Agency
Mathijs Harmsen: Utrecht Universiteit
Stratos Mikropoulos: Utrecht Universiteit
Mariësse A. E. Sluisveld: PBL Netherlands Environmental Assessment Agency
Elke Stehfest: PBL Netherlands Environmental Assessment Agency
Isabela S. Tagomori: PBL Netherlands Environmental Assessment Agency
Willem-Jan Zeist: Wageningen University and Research
Detlef P. Vuuren: Utrecht Universiteit
Nature Climate Change, 2024, vol. 14, issue 7, 715-722
Abstract:
Abstract To reach net-zero greenhouse gas targets, carbon dioxide removal (CDR) technologies are required to compensate for residual emissions in the hard-to-abate sectors. However, dependencies on CDR technologies involve environmental, technical and social risks, particularly related to increased land requirements for afforestation and bioenergy crops. Here, using scenarios consistent with the 1.5 °C target, we show that demand and technological interventions can substantially lower emission levels in four hard-to-abate sectors (industry, agriculture, buildings and transport) and reduce reliance on the use of bioenergy with carbon capture and storage. Specifically, demand measures and technology-oriented measures could limit peak annual bioenergy with carbon capture and storage use to 0.5–2.2 GtCO2e per year and 1.9–7.0 GtCO2e per year, respectively, compared with 10.3 GtCO2e per year in the default 1.5 °C scenario. Dietary change plays a critical role in the demand measures given its large share in residual agricultural emissions.
Date: 2024
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41558-024-02025-y Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:14:y:2024:i:7:d:10.1038_s41558-024-02025-y
Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/
DOI: 10.1038/s41558-024-02025-y
Access Statistics for this article
Nature Climate Change is currently edited by Bronwyn Wake
More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().