Limited influence of climate change mitigation on short-term glacier mass loss
Ben Marzeion (),
Georg Kaser,
Fabien Maussion and
Nicolas Champollion
Additional contact information
Ben Marzeion: University of Bremen
Georg Kaser: Universität Innsbruck
Fabien Maussion: Universität Innsbruck
Nicolas Champollion: University of Bremen
Nature Climate Change, 2018, vol. 8, issue 4, 305-308
Abstract:
Abstract Glacier mass loss is a key contributor to sea-level change1,2, slope instability in high-mountain regions3,4 and the changing seasonality and volume of river flow5–7. Understanding the causes, mechanisms and time scales of glacier change is therefore paramount to identifying successful strategies for mitigation and adaptation. Here, we use temperature and precipitation fields from the Coupled Model Intercomparison Project Phase 5 output to force a glacier evolution model, quantifying mass responses to future climatic change. We find that contemporary glacier mass is in disequilibrium with the current climate, and 36 ± 8% mass loss is already committed in response to past greenhouse gas emissions. Consequently, mitigating future emissions will have only very limited influence on glacier mass change in the twenty-first century. No significant differences between 1.5 and 2 K warming scenarios are detectable in the sea-level contribution of glaciers accumulated within the twenty-first century. In the long-term, however, mitigation will exert strong control, suggesting that ambitious measures are necessary for the long-term preservation of glaciers.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41558-018-0093-1 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:8:y:2018:i:4:d:10.1038_s41558-018-0093-1
Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/
DOI: 10.1038/s41558-018-0093-1
Access Statistics for this article
Nature Climate Change is currently edited by Bronwyn Wake
More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().