The climate mitigation opportunity behind global power transmission and distribution
Kavita Surana and
Sarah M. Jordaan ()
Additional contact information
Kavita Surana: University of Maryland
Sarah M. Jordaan: Johns Hopkins University
Nature Climate Change, 2019, vol. 9, issue 9, 660-665
Abstract:
Abstract Inefficient transmission and distribution (T&D) infrastructure that results in losses as electricity travels from supplier to customer contributes to compensatory power generation and therefore to unanticipated GHG emissions. Pilferage, poor planning and management in the T&D system also contribute to losses that can increase total electricity generation. Because the combination of electricity generation, combined heat and power generation and heat plants account for over 40% of global GHG emissions1, mitigation efforts tend to focus on electricity generated rather than delivered. We combine life cycle assessments of power generation with uncertainty analysis to bound potential emissions from compensatory generation from T&D aggregate losses (that is, technical and non-technical) in 142 countries. We estimate that electricity generated due to losses from T&D infrastructure is associated with nearly 1 billion metric tons of carbon dioxide equivalents per year (GtCO2e yr–1). Our global average estimates for potential emissions reductions that may be achieved by improvements in technical losses and aggregate losses are 411 and 544 million metric tons of carbon dioxide equivalents per year (MtCO2e yr–1), respectively. By reducing T&D losses, not only may compensatory emissions be reduced, but more electricity from low-carbon power-plant investments may reach the intended consumers.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
https://www.nature.com/articles/s41558-019-0544-3 Abstract (text/html)
Access to the full text of the articles in this series is restricted.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcli:v:9:y:2019:i:9:d:10.1038_s41558-019-0544-3
Ordering information: This journal article can be ordered from
https://www.nature.com/nclimate/
DOI: 10.1038/s41558-019-0544-3
Access Statistics for this article
Nature Climate Change is currently edited by Bronwyn Wake
More articles in Nature Climate Change from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().