EconPapers    
Economics at your fingertips  
 

Contribution of individual olfactory receptors to odor-induced attractive or aversive behavior in mice

Nao Horio, Ken Murata, Keiichi Yoshikawa, Yoshihiro Yoshihara and Kazushige Touhara ()
Additional contact information
Nao Horio: The University of Tokyo
Ken Murata: The University of Tokyo
Keiichi Yoshikawa: The University of Tokyo
Yoshihiro Yoshihara: The University of Tokyo
Kazushige Touhara: The University of Tokyo

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract Odorants are recognized by multiple olfactory receptors (ORs) and induce innate behaviors like attraction or aversion via olfactory system in mice. However, a role of an individual OR is unclear. Muscone is recognized by a few ORs including MOR215–1 and MOR214–3, and attracts male mice. Odor preference tests using MOR215–1 knockout mice revealed that MOR215–1 and other OR(s), possibly including MOR214–3, are involved in the attraction. (Z)-5-tetradecen-1-ol (Z5–14:OH) activates ~3 ORs, including Olfr288, and evokes attraction at low levels but aversion at higher levels. Olfr288 knockout mice show no attraction but aversion, suggesting Olfr288 is involved in preference for Z5–14:OH, whereas activation of other low-affinity Z5–14:OH receptors evokes aversion. Each OR appears to send a signal to a neural circuit that possesses distinct valence, leading to a certain behavior. The final output behavior with multiple ORs stimulation is determined by summation (addition or competition) of valences coded by activated ORs.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-07940-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07940-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-07940-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-07940-1