Bond percolation in coloured and multiplex networks
Ivan Kryven ()
Additional contact information
Ivan Kryven: Van’t Hoff Institute for Molecular Sciences, University of Amsterdam
Nature Communications, 2019, vol. 10, issue 1, 1-16
Abstract:
Abstract Percolation in complex networks is a process that mimics network degradation and a tool that reveals peculiarities of the network structure. During the course of percolation, the emergent properties of networks undergo non-trivial transformations, which include a phase transition in the connectivity, and in some special cases, multiple phase transitions. Such global transformations are caused by only subtle changes in the degree distribution, which locally describe the network. Here we establish a generic analytic theory that describes how structure and sizes of all connected components in the network are affected by simple and colour-dependent bond percolations. This theory predicts locations of the phase transitions, existence of wide critical regimes that do not vanish in the thermodynamic limit, and a phenomenon of colour switching in small components. These results may be used to design percolation-like processes, optimise network response to percolation, and detect subtle signals preceding network collapse.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-018-08009-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08009-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-08009-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().