EconPapers    
Economics at your fingertips  
 

A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications

J. Daniel Binion, Erik Lier, Thomas H. Hand, Zhi Hao Jiang and Douglas H. Werner ()
Additional contact information
J. Daniel Binion: The Pennsylvania State University
Erik Lier: Lockheed Martin Space
Thomas H. Hand: Lockheed Martin Space
Zhi Hao Jiang: The Pennsylvania State University
Douglas H. Werner: The Pennsylvania State University

Nature Communications, 2019, vol. 10, issue 1, 1-7

Abstract: Abstract Nearly two decades of intense study have passed since the term metamaterials was first introduced in 1999. In spite of their great promise, however, metamaterials have been slow to find their way into practical devices, and examples of real-world applications remain rare. In this paper, an Advanced Short Backfire Antenna (A-SBFA), augmented with anisotropic metamaterial surfaces (metasurfaces), has been designed to achieve a very high aperture efficiency across two frequency bands. This performance is unprecedented for an antenna that has seen widespread use, but few design changes over its more than 50 year existence. The reduced weight, compact design, hexagonal aperture, high dual-band efficiency, high cross-polarization isolation, as well as low multipaction and passive intermodulation (PIM) risk make the A-SBFA ideal for spaceborne applications. This transformative design demonstrates how practical metamaterials, when applied to conventional antenna technology, can provide significant performance enhancements.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-018-08032-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08032-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-018-08032-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08032-w