Half-quantum vortices and walls bounded by strings in the polar-distorted phases of topological superfluid 3He
J. T. Mäkinen (),
V. V. Dmitriev,
J. Nissinen,
J. Rysti,
G. E. Volovik,
A. N. Yudin,
K. Zhang and
V. B. Eltsov
Additional contact information
J. T. Mäkinen: Aalto University
V. V. Dmitriev: P. L. Kapitza Institute for Physical Problems of RAS
J. Nissinen: Aalto University
J. Rysti: Aalto University
G. E. Volovik: Aalto University
A. N. Yudin: P. L. Kapitza Institute for Physical Problems of RAS
K. Zhang: Aalto University
V. B. Eltsov: Aalto University
Nature Communications, 2019, vol. 10, issue 1, 1-8
Abstract:
Abstract Symmetries of the physical world have guided formulation of fundamental laws, including relativistic quantum field theory and understanding of possible states of matter. Topological defects (TDs) often control the universal behavior of macroscopic quantum systems, while topology and broken symmetries determine allowed TDs. Taking advantage of the symmetry-breaking patterns in the phase diagram of nanoconfined superfluid 3He, we show that half-quantum vortices (HQVs)—linear topological defects carrying half quantum of circulation—survive transitions from the polar phase to other superfluid phases with polar distortion. In the polar-distorted A phase, HQV cores in 2D systems should harbor non-Abelian Majorana modes. In the polar-distorted B phase, HQVs form composite defects—walls bounded by strings hypothesized decades ago in cosmology. Our experiments establish the superfluid phases of 3He in nanostructured confinement as a promising topological media for further investigations ranging from topological quantum computing to cosmology and grand unification scenarios.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-018-08204-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-018-08204-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-018-08204-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().