High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate
T. Saule,
S. Heinrich,
J. Schötz,
N. Lilienfein,
M. Högner,
O. deVries,
M. Plötner,
J. Weitenberg,
D. Esser,
J. Schulte,
P. Russbueldt,
J. Limpert,
M. F. Kling,
U. Kleineberg and
I. Pupeza ()
Additional contact information
T. Saule: Max-Planck-Institut für Quantenoptik (MPQ)
S. Heinrich: Max-Planck-Institut für Quantenoptik (MPQ)
J. Schötz: Max-Planck-Institut für Quantenoptik (MPQ)
N. Lilienfein: Max-Planck-Institut für Quantenoptik (MPQ)
M. Högner: Max-Planck-Institut für Quantenoptik (MPQ)
O. deVries: Fraunhofer-Institut für Angewandte Optik und Feinmechanik (IOF)
M. Plötner: Fraunhofer-Institut für Angewandte Optik und Feinmechanik (IOF)
J. Weitenberg: Max-Planck-Institut für Quantenoptik (MPQ)
D. Esser: Fraunhofer-Institut für Lasertechnik (ILT)
J. Schulte: Fraunhofer-Institut für Lasertechnik (ILT)
P. Russbueldt: Fraunhofer-Institut für Lasertechnik (ILT)
J. Limpert: Friedrich-Schiller-Universität Jena, Institut für Angewandte Physik (IAP)
M. F. Kling: Max-Planck-Institut für Quantenoptik (MPQ)
U. Kleineberg: Max-Planck-Institut für Quantenoptik (MPQ)
I. Pupeza: Max-Planck-Institut für Quantenoptik (MPQ)
Nature Communications, 2019, vol. 10, issue 1, 1-10
Abstract:
Abstract Laser-dressed photoelectron spectroscopy, employing extreme-ultraviolet attosecond pulses obtained by femtosecond-laser-driven high-order harmonic generation, grants access to atomic-scale electron dynamics. Limited by space charge effects determining the admissible number of photoelectrons ejected during each laser pulse, multidimensional (i.e. spatially or angle-resolved) attosecond photoelectron spectroscopy of solids and nanostructures requires high-photon-energy, broadband high harmonic sources operating at high repetition rates. Here, we present a high-conversion-efficiency, 18.4-MHz-repetition-rate cavity-enhanced high harmonic source emitting 5 × 105 photons per pulse in the 25-to-60-eV range, releasing 1 × 1010 photoelectrons per second from a 10-µm-diameter spot on tungsten, at space charge distortions of only a few tens of meV. Broadband, time-of-flight photoelectron detection with nearly 100% temporal duty cycle evidences a count rate improvement between two and three orders of magnitude over state-of-the-art attosecond photoelectron spectroscopy experiments under identical space charge conditions. The measurement time reduction and the photon energy scalability render this technology viable for next-generation, high-repetition-rate, multidimensional attosecond metrology.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-08367-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08367-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-08367-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().