EconPapers    
Economics at your fingertips  
 

Ultra-high on-chip optical gain in erbium-based hybrid slot waveguides

John Rönn (), Weiwei Zhang, Anton Autere, Xavier Leroux, Lasse Pakarinen, Carlos Alonso-Ramos, Antti Säynätjoki, Harri Lipsanen, Laurent Vivien, Eric Cassan () and Zhipei Sun ()
Additional contact information
John Rönn: Aalto University
Weiwei Zhang: CNRS, Université Paris-Sud, Université Paris-Saclay
Anton Autere: Aalto University
Xavier Leroux: CNRS, Université Paris-Sud, Université Paris-Saclay
Lasse Pakarinen: Aalto University
Carlos Alonso-Ramos: CNRS, Université Paris-Sud, Université Paris-Saclay
Antti Säynätjoki: Aalto University
Harri Lipsanen: Aalto University
Laurent Vivien: CNRS, Université Paris-Sud, Université Paris-Saclay
Eric Cassan: CNRS, Université Paris-Sud, Université Paris-Saclay
Zhipei Sun: Aalto University

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract Efficient and reliable on-chip optical amplifiers and light sources would enable versatile integration of various active functionalities on the silicon platform. Although lasing on silicon has been demonstrated with semiconductors by using methods such as wafer bonding or molecular beam epitaxy, cost-effective mass production methods for CMOS-compatible active devices are still lacking. Here, we report ultra-high on-chip optical gain in erbium-based hybrid slot waveguides with a monolithic, CMOS-compatible and scalable atomic-layer deposition process. The unique layer-by-layer nature of atomic-layer deposition enables atomic scale engineering of the gain layer properties and straightforward integration with silicon integrated waveguides. We demonstrate up to 20.1 ± 7.31 dB/cm and at least 52.4 ± 13.8 dB/cm net modal and material gain per unit length, respectively, the highest performance achieved from erbium-based planar waveguides integrated on silicon. Our results show significant advances towards efficient on-chip amplification, opening a route to large-scale integration of various active functionalities on silicon.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-08369-w Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08369-w

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-08369-w

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08369-w